网上药店
您现在的位置: 萨尔瓦多 >> 人口种族 >> 正文 >> 正文

从数学的角度思考,二次元的次元是什么

来源:萨尔瓦多 时间:2023/4/10
复方卡力孜然酊的价格是多少 http://baidianfeng.39.net/a_yqyy/140115/4327455.html

现在我在办公桌前写作,向上伸手可以打开台灯,向下则能从抽屉里拿出钢笔。当我往前伸出手臂,一个奇怪的小雕像拂过指尖,那是姐姐送给我的幸运符,而往后伸手,触手可及的是一只蜷在我背上的黑猫。我的左边是一叠必须处理的账单和信件,右边是我文章的研究札记。上、下、前、后、左、右:置身这个三维的个人世界中,坐标轴线透过办公室的直线结构无形地投射到我身上,它由三个相连的直角定义,就像大多数西方建筑一样。

我们的建筑、教育和字典都告诉我们空间是三维的。《牛津英语词典》将三维空间定义为“一个未被占用的连续区域……拥有高度、深度和宽度三个维度,所有事物都在其中存在和移动。”早在18世纪,伊曼纽尔·康德(ImmanuelKant)就认为三维欧几里得空间具有先天必然性,而随着计算机生成的图像和电子游戏不断占据当今人们的生活,我们也不断地受到似乎已经公理化的直角坐标网格的影响。从21世纪的角度来看,空间的三维特征似乎更是不言而喻的。

然而,西方文化的一项根本性革新提出了我们生活的空间可以具有任何数学结构的概念,这预示了人们从前对现实本质的固有认知将会被颠覆。尽管它的诞生经常被描述为向用机械论描述自然现象的过渡,但可以说现代科学更重要,当然也是更历久弥新,是它导致了我们将空间看作几何构造的概念性转变。

在过去的一个世纪里,对如何描述空间几何形状的探索已经成为理论物理学的一项重大课题,从阿尔伯特爱因斯坦(AlbertEinstein)开始,科学家们试图将自然界所有基础的力解释为空间形状的意外产物。虽然在局域上我们习惯认为空间具有三个维度,但广义相对论描绘了宇宙的四维图景,而弦论则说它有10个维度——如果你采用被称为M理论的扩展版本,则有11个维度。M理论在26维空间中存在很多变体,近来它对24维空间的描述引起了理论数学家们的极大兴趣。但是这些“维度”是什么?我们所谈论的10维空间到底意味着什么?

为了以现代数学的思维模式来思考空间,我们首先必须将其视为物质可能占据的某种领域。至少,“空间”必须被认为是某种延伸的东西。虽然这对我们来说是显而易见的,但亚里士多德(Aristotle)却对这种观点深恶痛绝,而他对物质世界的理解在古典时代晚期和中世纪一直是西方思想的主流。

严格来说,亚里士多德的物理学不包括空间理论,只包括位置的概念。比如一个放在桌子上的杯子,对于亚里士多德来说,杯子被空气包围着,空气本身就是一种物质。在他的世界图景中,没有所谓的“空”,只有一种物质——杯子,与另一种物质——空气,之间的界限。桌子同样可被看作一种物质。对于亚里士多德来说,“空间”(如果你想这样称呼它的话)只是杯子和它与它周围的物质之间无限小的界限,没有延伸的概念,其他物质就不可能占据它。

在亚里士多德几个世纪前,留基伯和德谟克里特(LeucippusandDemocritus)提出了一种现实理论,它本质上包含着一种空间化视觉的启用——一种“原子”的视觉,即物质世界是由在虚空中移动的微小粒子(即原子)组成的。但亚里士多德拒绝接受原子论,他声称虚空的概念在逻辑上是不连贯的。亚里士多德说,根据定义,虚空不可能“存在”。如何反驳亚里士多德对虚空概念的否定,以及更进一步对空间延展性的否定,将是几个世纪的巨大工程。直到17世纪早期,伽利略和笛卡尔(GalileoandDescartes)将空间的延展性作为现代物理学的基石之一,这一创新愿景才得以实现。正如美国哲学家埃德温·伯特(EdwinBurtt)所说,在这两位思想家的观点中“物理空间的概念被假定为与几何概念相同”——也就是现在学校里教授的三维欧几里得几何(Euclideangeometry)。

早在物理学家接受欧几里得的观点之前,画家们就开始尝试开创一种符合几何学的空间概念,正是由于他们,我们才在概念框架中实现了这一显著的飞跃。在中世纪晚期,柏拉图和毕达哥拉斯(PlatoandPythagoras),作为亚里士多德的主要思想对手,影响了一种新的观点在欧洲的诞生和传播。这种观点认为上帝创造世界时依据的是欧几里得的几何定律,因此,艺术家若想真实地描绘这个世界,就应该在表现策略上效仿造物主。从14世纪到16世纪,乔托(Giotto),保罗·乌切洛(PaoloUccello),皮耶罗·德拉·弗朗切斯卡(PierodellaFrancesca)等艺术家开发了后来被称为透视法的技术——一种最初被称为“几何学绘图”的作画风格。通过有意识地探索几何原理,这些画家逐渐学会了如何在三维空间中构建物体的图像。在这个过程中,欧洲人受到他们的影响,逐渐开始以欧几里得的思维理解空间。

历史学家塞缪尔·埃哲顿(SamuelEdgerton)在《乔托几何学的遗产》()中讲述了这一向现代科学的非凡过渡,他指出,亚里士多德对空间的认识被推翻是一个缓慢而间接的过程,当人们站在透视画前,本能地感觉到他们仿佛正在“透视”墙另一边的三维世界时,这一转变就这样不易察觉地发生了。当哲学家们和原始科学家们正谨慎地挑战亚里士多德关于空间的戒律时,艺术家们通过诉诸感官在这一领域另辟了一条不同寻常且更为激进的道路。从字面上看,透视是一种虚拟现实的形式,就像今天的VR游戏一样,它旨在让观众产生一种错觉,以为自己已经被传送到了另一个几何上连贯、心理上可信的世界。

“实”的结构从一个哲学和神学问题变成了一个几何命题

虚幻的欧几里得空间对透视的表达逐渐烙印在欧洲人的意识中,这一空间也被笛卡尔和伽利略奉为现实世界的结构。值得补充的是,伽利略本人接受过透视训练。他描绘深度的能力在他开创性的月球画中得到了突出的展现,画中不仅描绘了山脉和山谷,还暗示了月球与地球相同的坚硬的材质。

通过透视图像的空间特性,伽利略可以推演炮弹之类的物体是如何根据数学定律运动的。空间本就是一种抽象——一个既没有特征也没有变化,既不可触碰也不可感知的虚空,它唯一可知的属性就是它的欧几里得形式。到了17世纪末,艾萨克·牛顿(IsaacNewton)将伽利略的视野扩大到将整个宇宙包括在内,从此空间变成了一个潜在的无限三维真空——一个巨大的、无质量的、永远向各个方向延伸的虚象,“实”的结构从一个哲学和神学问题逐渐转变为一个几何命题。

从前,画家们使用数学工具开发了构建图像的新方法,而到了“科学革命”的黎明,笛卡尔发现了另一种内化数学关系的图像构建方法。在这一过程中,他规范了维度的概念,并给我们的意识注入一种看待世界的新方式,一种进行科学研究的新工具。

今天,几乎每个人都能在笛卡尔平面的图像中认识到他的天赋异禀——一个标有x和y轴的矩形网格,以及一个坐标系。

根据定义,笛卡尔平面是一个二维空间,因为我们需要两套坐标来标定其中的某一点。笛卡尔发现,通过这个框架,他可以将几何形状和方程联系起来,比如半径为1的圆可以用方程x+y=1来描述。

大量可以绘制在这个平面上的图形同时也可以用方程来描述,在物理学家进一步分析运动过程中,这种“解析”方法,即“笛卡尔几何”,将成为牛顿和莱布尼茨发展微积分的基石。理解微积分的一种方法是研究曲线,这使我们能够正式标定曲线最陡峭的位置和达到局部最大或最小值的位置。被应用于运动研究中,微积分成为了一种分析和预测的方法,例如,它能分析抛向空中的物体达到最大高度需要的条件,也可以预知当球从弯曲斜坡上滚下时能保持的特定速度。微积分自出现以来就已成为几乎所有科学分支的关键工具。

以先前的图示为例,很容易得出添加第三个轴的方式。因此,用x、y和z轴,我们可以描述出球体的表面——比如一个沙滩球的外皮。这里方程(对于半径为1的球体)变为:x+y+z=1

通过三个轴,我们可以描述三维空间中的形状。同样,每个点都由三个坐标唯一标定:这是构造三维空间“三维性”的必要条件。

但为什么止步于此呢?如果增加上第四个维度呢?称这一维度为p。现在可以给我所谓的位于四维空间中的球体写出一个方程:x+y+z+p=1。我不能为你画出这个物体,但在数学上增加另一个维度是合理的,“合理”意味着这样做在逻辑上没有任何矛盾——没有理由不能这样做。

“维度”变成了一个纯粹的象征性概念,与物质世界没有任何必然联系。

A‘dimension’be

转载请注明:http://www.wangsicongg.com/rkzz/11868.html